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Let Ll be the difference operator defined by Llf(x)=f(x+1)-f(x). The
polynomial Amx n of degree n - m is known to have n - m collinear zeros. We study
the distribution of these zeros and relate them to zeros of Hermite polynomials.
Several open questions are presented. © 1992 Academic Press, Inc.

1. INTRODUCTION

For positive integers m, n, d with

O<m<n, d=n-m, (1.1)

define

(1.2)

where Ll is the difference operator defined by

Llf(x) = f(x + 1) - f(x). (13)

(1.4 )
if dis odd.

if dis even

Define the corresponding reduced central difference polynomial C(z)
d> 1 by

{

idD( - i ,J; - mI2),
C(z) = Cn,m(z) = id D( - i,J; - m/2)/,J;,

Both C(z) and D(x) are monic polynomials over Q), with

d=deg(D), c := deg(C) = [d/2]. (1.5 )

The study of the zeros of D(x) can be reduced to the study of the zeros
of C(z). For, in [1, Theorem 2.3J, it is shown that there are c positive
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2 EVANS AND W AVRIK

numbers Yl< ... <Yc such that the dzeros of D(x) are -mI2±iyr. ...,
-m12 ± iyc> together with -m12 if d is odd, while C(z) has c distinct
positive zeros zn

(1.6)

Call Zc the "spectral radius" of C(z). In [1, Eqs. (1.11), (2.5)], it is noted
that

for all d> 1, and that

m(d - 1)/12 ~ Zc ~m(P - d)/24 (1.7)

if m = 1. (1.8)

The purpose of this paper is to further study the distribution of zeros of
C(z); the primary focus is on the growth of the spectral radius Zc' See
Table 5.1 for a list of zeros of C(z) with 4 ~ n ~ 16.

In Theorem 2.1, it is shown that for d> 1 and any 8 > 0,

(min)" ~ zcl(nd) ~ (mdln)"; (1.9)

i.e., the spectral radius zc grows much like nd. Some interesting special
cases of (1.9) are given at the end of Section 2. For example, if m is bounded,
then

(1.10)

so the upper bound in (1.7) is sharper than the lower bound for large d.
On the other hand, if both dim and mid are bounded (e.g., if mid is
constant), then

(1.11)

so in this case the lower bound in (1.7) is sharper than the upper bound
for large d. The implied constants in (1.9)-(1.11) may depend on 8, but not
on m, d. We will sharpen (1.7) and (1.9) for large m; see (1.16).

In Section 3, we make some observations and conjectures on the
behavior of the zeros of C(z) based on numerical evidence. For example,
we observe that for any fixed integer n, 3~ n ~ 50, the spectral radius Zc is
a unimodal function of the integer m (1 ~ m ~ n - 2), which assumes its
maximum at m = [2nI5]. If this phenomenon holds for all n, then by
(1.11), the "maximum spectral radius function"

Z(n)= max Zc
1~m~n~2

(1.12 )



dearly satisfies

ZEROS OF DIFFERENCE POLYNOMIALS 3

for any B > 0, where the implied constants may depend on B (cr. Table 5.2
and Fig. 5.3).

In [1, Theorem 3.2J, it is proved that

where the polynomial Qk(X) E Q)[xJ has degree k and is independent of d
for each k ~ O. While C(z) was originally defined only for positive integers,
the definition of C(z) can be extended for all complex m by (1.14).

In general, the zeros of C(z) are not necessarily collinear (or simple). For
example, the zeros of C(z) when d = 15, m = 1.1 are approximately

-0.0522163, 1.84607,6.71539,0.0368418 ±0.152016i, 0.521009 ±0.279992i.

(U5)

This contrasts with the fact that all zeros of C(z) are positive when m is a
positive integer. Theorem 4.3 shows that for all real m > M(d), the zeros of
C(z) are again positive, while for all real m < -M(d), the zeros of C(z) are
negative. Here M(d) denotes the maximum modulus of the zeros of the
polynomial Disc(m), where Disc(m) is the discriminant of C(z). The first
few values of M(d) are M(2)=M(3)=0 (by convention), M(4) = 0.2,
M(5) = 0.6, M(6) ~ 1.105031, M(7) ~ 1.680194, M(8) ~ 2.306474, M(9) ""
2.971947, M(10) ~ 3.668542. We conjecture that for d~ 4, M(d) is the
absolute value of the leftmost negative zero of Disc(m). It would be very
interesting to analyze the growth of M(d) as d -'> 00. It is true that
M(d) < d 2 ? Is M(d) monotone increasing?

Theorem 4.1 shows that if Iml > M(d), then the zeros Zv of C(z) possess
convergent expansions of the form zv=mL~ouvrm-r, where the
coefficients uvr can be expressed in terms of zeros of Hermite polynomials;
see (4.10) and (4.19). We conjecture that uvr=O(d r + 1

) as d-+oo; see
(4.20). Corollary 4.2 shows, e.g., that for large Iml, the spectral radius Zc

satisfies

(1.16)

Note that for large Imi, (1.16) sharpens (1.9), for each fixed d>2, and
(1.16) sharpens (1.7) as well for each fixed d> 9.
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2. BOUNDS FOR THE SPECTRAL RADIUS OF C(Z)

The following theorem shows that the spectral radius Zc of C(z) grows
much like nd.

THEOREM 2.1. Let 1<d=n-m. Then for any e>O,

(m/n)" ~ zc/(nd) ~ (md/n y, (2.1 )

where the implied constants may depend on e (but not on m, d, n).

Proof Let Tk denote the sum of the kth powers of the zeros of
C(z), i.e.,

In [1, Theorem 4.1], it is shown that for integer k ~ 1,

(2.2)

2k+l-j
L: bi,j(k) dimJ,
i= 1

(2.3 )

where the coefficients bi,J(k) are rational and satisfy

(_l)i+ Jbi,J(k) < 0,

Fix an integer k> l/e. By (2.3),

k

Tk~ L d2k+l-JmJ.
J=l

On the other hand, since bZk+1-J,J(k»0 by (2.4),

k

Tk~ L dZk+l-JmJ.
J=l

Since n = m + d exceeds both m and d,

kL dZk+l-JmJ<kmdk+lnk-l.
J=l

Since

(2.4)

(2.5)

(2.6)

(2.7)

dk- 1+mk- 1 > «m +d)/2)k-l = (n/2t- 1
, (2.8)

k

mdk+l(n/2t-l«mdzk+mkdk+l)~ L: dZk+l-JmJ. (2.9)
J=l
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Combining (2.5) and (2.7), we have

Tk ~ (nd)k (:~.

Combining (2.6) and (2.9), we have

(ndl (min) ~ Tdc.

Because the zeros of C(z) are positive, it follows from (2.2) that

By (2.10)-(2.12),

5

(2.10)

(2J1)

(2.12)

(2.13)

Since G > 11k, (mln)l/k > (min)'. Also, (2mdln)1/k < (2mdln)", because
2md> n. Thus the result follows from (2.13).

If m is bounded, then Theorem 2.1 yields

(2.14)

(This is consistent with (1.8).) In this case, the upper bound in (1.7) is
sharper than the lower bound, for large d.

If d is bounded, Theorem 2.1 yields

(2.15)

(This is consistent with (1.7).)
If mid and dim are both bounded, Theorem 2.1 yields

(2.16 )

In this case, the lower bound in (1.7) is sharper than the upper bound, for
large d.

If mid tends to zero, Theorem 2.1 yields

(2.17)

If dim tends to zero, Theorem 2.1 yields

(2.18)
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3. CONJECTURES AND OBSERVATIONS ON ZEROS OF C(Z)

The spectral radius Zc has been defined as the largest zero of
C(z) = Cn,m(z). More generally, for a nonnegative integer k, define
zc_k(n, m) to be the (k+ l)st largest zero of C(z). Note that Zc-k is
meaningful only if c > k, i.e" if n - m = d~ 2k + 2. In particular, n ~ 2k + 3.

Conjecture 3.1. For fixed integers nand k, Zc-k is a unimodal function
of the integer m, 1 ~ m ~ n - 2k - 2. In particular, the spectral radius is
unimodal for 1 ~ m ~ n - 2.

We have verified Conjecture 3.1 for all n~ 50. In the case k =0, we were
surprised to see that for each fixed n ~ 50, the peak of the unimodal
function Zc always occurs at

m = [2n/5]. (3.1 )

More generally, for °~ k ~ 9, n ~ 50, the peak of the unimodal function
Zc-k always occurs at

m = [(2n - 3k)/5],

provided that n ~ n1(k), where

nl(O) = 3, n 1(1) = 5, n1(2) = 9, n 1(3) = 13, n1(4) = 17, nl(5) = 26,

nl(6) = 30, n1(7) = 39, n1(8) = 43, n1(9) = 47.

(3.2)

(3.3)

For small values of n < n1(k), another curiously regular phenomenon
was observed. Namely, for °~ k ~ 10, n ~ 50, the peak of the unimodal
function Zc-k always occurred at

m= [(n-2k-1)/2],

provided that n ~ no(k), where

no(O) = 6, no(l) = 10, no(2) = 14, no(3) = 18, no(4) = 22, no(5) = 24,

no(6) = 28, no(7) = 30, no(8) = 34, no(9) = 38, no(lO) = 40.

Define the "maximum spectral radius" function Z(n) by

Z(n)= max Zc'
1 ~m::':;"n-2

See Table 5.2 for a list of values of Z(n), 4 ~ n ~ 50.

Conjecture 3.2. For aIle> 0,

(3.4 )

(3.5)

(3.6)

n~oo.
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If the spectral radius Zc always assumes its maximum at m = [2n/5]
(see (3.1)), then Conjecture 3.2 is valid by (2.16). Suggestive evidence
supporting Conjecture 3.2 is provided by Fig. 5.3.

A possible approach to settling the conjectures in this section is to
consider Zc as a continuous function of real (rather than integer) variables
m, n. Despite the considerable amount of literature on fractional finite
difference operators, we have been unable to find the appropriate definition
of C(z) as a function of real m, n.

4. EXPANSIONS OF ZEROS OF C(z) IN DESCENDING POWERS OF m

Throughout this section, d is an integer > 1. In view of (1.14), the
polynomial C(z) is well-defined for all complex m. We will drop the
restriction that m be an integer and allow m to be complex in this section.

Let hi> ..., he denote the c positive zeros of the dth Hermite polynomial

. e k d! d-Zk
Hd=Hd(X)=k~O (-1) (d_2k)lkl(2x) (4.1)

with

(4.2)

(4.3 )

see [4, pp. 106, 130J. The d zeros of H d are ±h v (1 ~ v~ c) together with
o if d is odd. We will relate the zeros of C(z) to the zeros hv of H d in
Theorem 4.1.

With the polynomials Qk(X) of degree k appearing in (1.14), define
polynomials F(w, v) = Fd(w, v) by

F(w, v)= k~O (_1)k (~) Qk(W-l)WkVd-Zk.

If for a fixed complex W=Wo, the d zeros Vi of F(wo, v) are distinct, then
by a classical version of the implicit function theorem [3, p. 170; 2, p. 105],
there are d analytic functions vJw) in a neighborhood of w = Wo such that

0= F(w, vi(w)), (4.4)

Since Qk(X) has leading term (2k)! (x/24)k/k! by [1, Eq. (3.17)], it follows
from (4.3) and (4.1) that

F(O,v)= ±(_1)k(d) (2k)~Vd-2k=24-d!ZHAv..j6). (4.5)
k=O 2k k! 24
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Since the d zeros of H d are distinct, there are c analytic functions vv(w)
(1 ~ v ~ c) in a neighborhood of w= 0 such that

(4.6)

We proceed to extend the local functions vy(w) to global ones.
For each d, the discriminant of C(z) is a polynomial in mover Q, by

(1.14). Let M(d) denote the maximum modulus of the zeros of this discri­
minant polynomial in m. If Iml > M(d), the c zeros of C(z) are distinct.
Thus, for each fixed complex w with Iwl <M(d)-l, the zeros Vi of F(w, v)
are distinct, since

r::;::, { C(z)
meF(l/m, y z/m) = p;;; C(z),

if d is even

if d is odd,
(4.7)

by (4.3) and (1.14). Since the disk Iwl < M(d)-l is simply connected, it
follows from the monodromy theorem that there exist c analytic functions
vy(w) (1 ~v~c) on the entire disk Iwl <M(d)-l such that (4.6) holds. In
view of (4.7), the c zeros of the polynomial C(z) are given by

Zv = mvv (1/m)2, 1~ v~ c, (4.8)

when Iml > M(d).

THEOREM 4.1. Assume that Iml > M(d). Then the zeros Zv (1 ~ v~ c) of
C(z) have the convergent expansions

where
uvO = h~/6

(4.9)

(4.10)

and where for each pair r, d, there is a polynomial fr,d in Q[x] such that

Proof For 1 ~ v~ c, write

00 V wr

vv(w)= I ~,
r=O r.

From (4.6), we have

1~ v~c. (4.11 )

(4.12 )

and

(4.13)

(4.14)
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Fix t ~ 1. The coefficient of WI in the Taylor series expansion of the right
member of (4.14) equals a polynomial in VvO' V v /5 ••• , Vv,l_l plus

V
vt ~ (_1)k(d) (2k)! (d_2k)V d - 2k - 1 • (4.15)

t1 k7:
0

2k k! 24k
vO

By (4.5), the expression in (4.15) equals

VVI24-d/2 16H'(v 16)t! v U d vO V U , (4.16)

which is a nonzero multiple of VVI by (4,13). Since the coefficient of w' in
(4.14) vanishes, it follows by induction on t that

1~ v~ c, (4.17 )

where gr,d is a polynomial over i[j) with all exponents of the same parity
(note that i[j)[v~o] = Q(v~o)' The result now follows from (4.12), (4.13),
(4.17), and (4.8).

By a more involved argument (which we omit), it can be shown that for
each r ~ 0, there exist polynomials fr (x, y) and gr(x, y) in Q [x, y] such
that

and

(1~v~c)

(1 ~ v ~ c).

(4.18)

(4.19)

Tables 5,4 and 5.5 give these polynomials for r =:; 1,2, 3. These tables
suggest the conjecture that both fr and gr have total degree r. If this
conjecture is true, then by (4.19),

as d~ 00, (4.20)

for each fixed pair v, r, since the zeros of H d are O(d 1
/
2

) [4, p. 130,
Eq. (6.31.19)].

By Theorem 4.1, Zv behaves approximately like a linear function of m for
large Iml, namely

(4.21 )

see Table 5.5. For an example of use of Theorem 4.1 for numerical
approximation of the smallest positive zero of C(z), let m = 6, d = 10, v = 1.
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Then hI =0.342901327... , m>M(d)=3.6... , and z}=0.088104... can be
approximated by mulO + Ull + u12/m + u13 /m2= 0.088110....

The following result sharpens Theorem 2.1 for large Iml and fixed d> 1.

COROLLARY 4.2. For large Iml and fixed d> 1,

mn2(4v -1- (_1)d)2 m(4v +2- (-l)df
96(2d+1) <Izvl< 6(2d+1) , l~v~c. (4.22)

(4.23 )(l ~v ~c).

Proof This result follows immediately from Theorem 4.1 and the
following bound for positive zeros of Hermite polynomials [4, p. 130,
Eq. (6.31.19)]:

n(4v - 1- (_l)d). 4v +2 - ( _1)d
~ <hv < ~

4 v 2d+1 v 2d+ 1

THEOREM 4.3. Let Iml > M(d) with m real. Then each zero Zv of C(z) is
real and has the same sign as m. In particular, if m < -M(d), then the d
zeros ofD(x) are all real.

Proof By (4.12), (4.13), and (4.17), vAw) is real. Thus Zv has the same
sign as m by (4.8). Finally, if m < -M(d), then the zeros of C(z) are
negative, so the zeros of D(x) are real by (1.4).

5. TABLES AND GRAPH

TABLE 5.1

Zeros of Cn,m(z)

n=4 m=1 OOסס0.25

n=4 m=2 0.166667

n=5 m=1 0.473607 0.026393
n=5 m=2 0.500000
n=5 m=3 0.250000

n=6 m=l 0.750000 0.083333
n=6 m=2 0.928174 0.071826
n=6 m=3 OOסס0.75

n=6 m=4 0.333333

n=7 m=1 1.077985 0.158991 0.013024
n=7 m=2 1.434259 0.232408
n=7 m=3 1.382456 0.117544
n=7 m=4 oo00סס.1

n=7 m=5 0.416667

(Table continued)
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TABLE 5.1-Continued

n=8 m=1 1.457107 0.250000 0.042893
n=8 m=2 2.011743 0.448691 0.039566
n=8 m=3 2.116025 0.383975
n=8 m=4 1.836660 0.163340
n=8 m=5 1.250000
n=8 m=6 0.500000

n=9 m=1 1.887158 0.355069 0.083333 0.007773
n=9 m=2 2.657329 0.710202 0.132468
n=9 m=3 2.938034 0.741999 0.069967
n=9 m=4 2.797055 0.536278
n=9 m=5 2.290833 0.209167
n=9 m=6 1.500000
n=9 m=7 0.583333

n= 10 m=l 2.368034 0.473607 0.131966 0.026393
n= 10 m=2 3.369018 1.012995 0.259568 0.025086
n= 10 m=3 3.841976 1.170624 0.237400
n= 10 m=4 3.8619.14 1.037019 0.101067
n= 10 m=5 3.477767 0.688900
n= 10 m=6 2.744990 0.255010
n= 10 m=7 1.750000
n= 10 m=8 0.666667

n= 11 m=1 2.899676 0.605308 0.187708 0.052140 0.005168
n= 11 m=2 4.145446 1.355514 0.412823 0.086217
n= 11 m=3 4.823945 1.660554 0.468988 0.046513
n= 11 m=4 5.021271 1.633240 0.345489
n= 11 m=5 4.784706 1.332875 0.132420
n= 11 m=6 4.158312 0.841688
n= 11 m=7 3.199138 0.300862
n= 11 m=8 2.000000
n= 11 m=9 0.750000

n= 12 m=1 3.482051 0.750000 0.250000 0.083333 0.017949
n= 12 m=2 4.985606 1.737222 0.588266 0.171574 0.017332
n = 12 m=3 5.881319 2.207146 0.750000 0.161535
n= 12 m=4 6.269176 2.309628 0.685082 0.069447
n= 12 m=5 6.198061 2.097151 0.454788
n= 12 m=6 5.706914 1.629195 0.163891
n= 12 m=7 4.838760 0.994573
n= 12 m=8 3.653280 0.346720
n= 12 m=9 2.250000
n = 12 m=lO 0.833333

n= 13 m=1 4.115136 0.907581 0.318529 0.119111 0.035958 0.003686
n = 13 m=2 5.888706 2.158048 0.783700 0.275462 0.060751
n= 13 m=3 7.012192 2.807886 1.073129 0.323620 0.033172

(Table continued)
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TABLE 5.1-Continued

n= 13 m=4 7.601686 3.057997 1.097241 0.243076
n= 13 m=5 7.709731 2.960089 0.903913 0.092934
n= 13 m=6 7.373471 2.561848 0.564681
n= 13 m=7 6.628771 1.925800 0.195430
n= 13 m=8 5.519146 1.147520
n= 13 m=9 4.107418 0.392582
n= 13 m=10 2.500000
n= 13 m=l1 0.916667

n= 14 m=l 4.798917 1.077985 0.393104 0.158991 0.057979 0.013024
n= 14 m=2 6.854100 2.618145 0.997788 0.394831 0.122441 0.012695
n= 14 m=3 8.215098 3.461332 1.434489 0.521867 0.117214
n= 14 m=4 9.015982 3.873567 1.570141 0.489509 0.050801
n= 14 m=5 9.314394 3.909712 1.448891 0.327004
n= 14 m=6 9.147658 3.611515 1.124146 0.116681
n= 14 m=7 8.548038 3.027052 0.674910
n= 14 m=8 7.550401 2.222591 0.227008
n= 14 m=9 6.199490 1.300510
n= 14 m=lO 4.561553 0.438447
n= 14 m=l1 OOסס2.75

n= 14 m= 12 ooסס1.00

n= 15 m=l 5.533386 1.261170 0.473607 0.202682 0.083333 0.026393 0.002762
n= 15 m=2 7.881249 3.117772 1.229655 0.527915 0.198228 0.045180
n= 15 m=3 9.488859 4.166621 1.831942 0.750183 0.237540 0.024856
n= 15 m=4 10.509929 4.753351 2.097116 0.792206 0.180730
n= 15 m=5 11.008284 4.938802 2.072933 0.660731 0.069250
n= 15 m=6 11.022719 4.762285 1.802912 0.412084
n= 15 m=7 10.583954 4.263612 1.345198 0.140570
n= 15 m=8 9.722053 3.492599 0.785348
n= 15 m=9 8.471876 2.519511 0.258613
n= 15 m=lO 6.879803 1.453530
n= 15 m= 11 5.015686 0.484314
n=15 m=12 3.000000
n= 15 m=13 1.083333

n= 16 m=l 6.318536 1.457107 0.559957 OOסס0.25 0.111616 0.042893 0.009892
n= 16 m=2 8.969684 3.657236 1.478693 0.673632 0.285702 0.092019 0.009701
n= 16 m=3 10.832496 4.923225 2.264313 1.004899 0.386044 0.089024
n= 16 m=4 12.081836 5.695377 2.674211 1.141740 0.368030 0.038806
n= 16 m=5 12.788584 6.042709 2.766207 1.071526 0.247641
n= 16 m=6 12.993913 6.004386 2.579006 0.834592 0.088104
n= 16 m=7 12.728290 5.615541 2.158361 0.497808
n= 16 m=8 12.019168 4.916185 1.566767 0.164546
n= 16 m=9 10.895685 3.958391 0.895923
n= 16 m=lO 9.393240 2.816524 0.290236
n= 16 m= 11 7.560095 1.606571
n= 16 m=12 5.469818 0.530182
n= 16 m=13 3.250000
n= 16 m=14 1.166667
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TABLE 5.2

Table of Z(n)--Maximum Spectral Radius Function [see (3.7)]

4 0.250000 28 49.382763
5 0.500000 29 53.575608
6 0.928174 30 57.873439
7 1.434258 31 62.466259
8 2.116025 32 67.155896
9 2.938033 33 72.056263

10 3.861913 34 77.149253
11 5.021271 35 82.349257
12 6.269176 36 87.847622
13 7.709731 37 93.443404
14 9.314394 38 99.254114
15 11.022719 39 105.257903
16 12.993912 40 111.371572
17 15.057720 41 117.784952
18 17.320743 42 124.296196
19 19.761363 43 131.027035
20 22.305547 44 137.949990
21 25.128667 45 144.986444
22 28.046498 46 152.322389
23 31.167635 47 159.756542
24 34.474462 48 167.415428
25 37.885140 49 175.264322
26 41.584721 50 183.231006
27 45.380277

FIG. 5.3. Graph of y = Z(n )/n 2 (n-axis from 0 to 50 with tic marks at 5; y-axis from 0 to
0.075 with tic marks at 0.005).
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TABLE 5.4

Table of Vk=V,k [See (4.12)]

TABLE 5.5

Table of Uk = U,k [See (4.9)]
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